Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Infect Public Health ; 15(7): 788-799, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1895226

ABSTRACT

BACKGROUND: As the therapeutic regimens against the COVID-19 remain scarce, the microRNAs (miRNAs) can be exploited to generate efficient therapeutic targets. The miRNAs have been found to play pivotal roles in the several regulatory functions influencing the prognosis of viral infection. The miRNAs have a prospective role in the up and down regulation of the ACE2 receptors. This review examines the clinical applications, as well as the possible threats associated with the use of miRNAs to combat the deleterious consequences of SARS-CoV-2 infection. METHODOLOGY: This article was compiled to evaluate how the miRNAs are involved in the SARS-CoV-2 pathogenesis and infection, and their potential functions which could help in the development of therapeutic targets against the COVID-19. The sources of the collected information include the several journals, databases and scientific search engines such as the Google scholar, Pubmed, Science direct, official website of WHO, among the other sites. The investigations on the online platform were conducted using the keywords miRNA biogenesis, miRNA and ACE2 interaction, therapeutic role of miRNAs against SARS-CoV-2 and miRNA therapy side effects. RESULTS: This review has highlighted that the miRNAs can be exploited to generate potential therapeutic targets against the COVID-19. Changes in the miRNA levels following viral replication are an essential component of the host response to infection. The collection and modification of miRNA modulates may help to minimize the deleterious consequences of SARS-CoV-2 infection, such as by controlling or inhibiting the generation of cytokines and chemokines. The degradation of viral RNA by the cellular miRNAs, along with the reduced expression of ACE2 receptors, can substantially reduce the viral load. Specific miRNAs have been found to have an antiviral influence, allowing the immune system to combat the infection or forcing the virus into a latency stage. CONCLUSION: This review summarizes several studies revealing the involvement of miRNAs in diverse and complex processes during the infection process of SARS-CoV-2. The miRNAs can substantially reduce the viral load by degradation of viral RNA and reduced expression of ACE2 receptors, besides mitigating the deleterious consequences of the exaggerated secretion of cytokines. Extensive investigations need to be done by the scientific community to utilize the miRNA based strategies for the development of effective therapeutic targets against the COVID-19.


Subject(s)
COVID-19 Drug Treatment , MicroRNAs , Angiotensin-Converting Enzyme 2 , Cytokines , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/therapeutic use , RNA, Viral/genetics , SARS-CoV-2
3.
Hum Vaccin Immunother ; 18(5): 2055947, 2022 11 30.
Article in English | MEDLINE | ID: covidwho-1784266

ABSTRACT

The COVID-19 pandemic has severely affected the entire globe since the first isolation of SARS-CoV-2 from patients with severe respiratory illness in Wuhan, China. Although the global vaccination drive is in full swing, many cases of reinfection have also been reported after vaccination. Currently, there is a scarcity of data available on the reinfection and vaccine breakthrough infections in Iraq. In this letter, we have presented a case report on the SARS-CoV-2 vaccine breakthrough reinfection in a health-care worker after completion of the double-dose vaccination. An increased symptom severity was reported on the second infection, which was confirmed to be of Delta variant. Such vaccine breakthrough infection reports have raised important questions regarding the duration of vaccine-mediated immunity and vaccine effectiveness against all circulating variants. These have further emphasized the importance of following non-pharmaceutical interventions by fully vaccinated individuals, especially at health-care settings.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Iraq , Pandemics/prevention & control , Reinfection/prevention & control , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL